Author Affiliations
Abstract
1 School of Information Science and Engineering, Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao, China
2 Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Qingdao, China
3 Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
4 Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services, SCCE, University of Science and Technology Beijing, Beijing, China
We firstly report a 2-μm all-fiber nonlinear pulse compressor based on two pieces of normal dispersion fiber (NDF), which enables a high-power scaling ability of watt-level and a high pulse compression ratio of 13.7. With the NDF-based all-fiber nonlinear pulse compressor, the 450-fs laser pulses with a repetition rate of 101.4 MHz are compressed to 35.1 fs, corresponding to a 5.2 optical oscillation cycle at the 2-μm wavelength region. The output average power reaches 1.28 W, which is believed to be the highest value never achieved from the previous 2-μm all-fiber nonlinear pulse compressors with a high pulse repetition rate above 100 MHz. The dynamic evolution of the ultrafast pulse inside the all-fiber nonlinear pulse compressor is numerically analyzed, matching well with the experimental results.
few-optical-cycle pulses high pulse repetition rate nonlinear pulse compression 
High Power Laser Science and Engineering
2023, 11(1): 01000e14
Author Affiliations
Abstract
1 School of Information Science and Engineering, Shandong University, Qingdao 266237, China
2 School of Physics and Technology, University of Jinan, Jinan 250022, China
We report VOx/NaVO3 nanocomposite as a novel saturable absorber for the first time, to the best of our knowledge. The efficient nonlinear absorption coefficient and the modulation depth are determined by the Z-scan technology. As a saturable absorber, a passively Q-switched Nd-doped bulk laser at 1.34 µm is demonstrated, producing the shortest pulse duration of 129 ns at a repetition rate of 274 kHz. In the passively Q-switched Tm:YLF laser with the prepared saturable absorber, the shortest pulse duration was 292 ns with a repetition rate of 155 kHz. Our work confirmed the saturable absorption in VOx/NaVO3 for possible optical modulation in the near-infrared region.
nonlinear optical properties saturable absorber VOx/NaVO3 composite Q-switching 
Chinese Optics Letters
2022, 20(5): 051601
作者单位
摘要
1 山东大学信息科学与工程学院, 山东 青岛 266237
2 山东大学晶体材料研究所, 山东 济南 250100
时至今日,非线性光学材料在光电子、通信、信息处理等领域的重要作用日益突出,发展新型、优良的非线性光学材料迫在眉睫。与传统的无机非线性光学材料相比,有机非线性光学材料在损伤阈值、响应时间和非线性光学系数上具有决定性优势。沸石咪唑酯骨架结构材料(ZIFs)是一类以咪唑或其衍生物为配体的特殊金属有机骨架结构材料,其以结构多样性、高度的热学和化学稳定性,近年来受到了国内外研究者的关注。本文总结了沸石咪唑酯骨架结构材料制备方法以及非线性光学特性的研究进展,并就沸石咪唑酯骨架结构材料在非线性光学领域的应用前景进行了展望。
材料 非线性光学材料 纳米材料 金属有机纳米骨架 沸石咪唑酯骨架结构 调Q 
中国激光
2021, 48(12): 1203001
商景诚 1,2,3刘一州 1,2赵圣之 1,2冯天利 1,2,3,*[ ... ]李涛 1,2,3,**
作者单位
摘要
1 山东大学信息科学与工程学院, 山东 青岛 266237
2 山东大学山东省激光技术与应用重点实验室, 山东 青岛 266237
3 山东大学激光与红外系统集成技术教育部重点实验室, 山东 青岛 266237
4 山东大学晶体材料研究所, 山东 济南 250100
光参量啁啾脉冲放大器(OPCPA)在实现高功率、大能量、光学周期量级的超短激光脉冲输出方面极具优势。对具有高脉冲重复频率(≥1 kHz)的OPCPA系统展开研究讨论,全面介绍OPCPA系统的组成;针对不同波段的OPCPA系统,对泵浦源、前端、光参量放大级和压缩器等关键模块分别进行对比和讨论,对限制OPCPA系统性能提升的因素进行分析;最后总结不同输出波长的高重复频率OPCPA系统的研究现状,并对未来的发展方向进行展望。
激光技术 光参量啁啾脉冲放大器 超快激光 高功率 高重复频率 光学周期 
中国激光
2021, 48(12): 1201004
Author Affiliations
Abstract
1 China Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Qingdao 266237, China
2 School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao 266237, China
3 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
4 School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
5 Leibniz-Institut für Kristallzüchtung, 12489 Berlin, Germany
6 e-mail: tlfeng@sdu.edu.cn
Zirconium carbide (ZrC) with layered structure and nanoparticle morphology was prepared by sonication in an ethyl alcohol solvent. The morphology and saturable absorption properties of the ZrC were systematically analyzed. By using ZrC nanoparticle coated substrates as saturable absorbers, stable Q-switched 3 μm Er:Lu2O3 lasers were realized. Pulse durations of 50 ns with pulse energies of 20 μJ and peak power of 0.4 kW are the shortest obtained with novel-material-based Q-switched lasers in the 3 μm wavelength range.
Photonics Research
2020, 8(12): 12001857
Author Affiliations
Abstract
1 School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao 266237, China
2 Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Department of Applied Physics, Beihang University, Beijing 100191, China
3 Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
4 State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China
5 Key Laboratory of Transparent and Opto-Functional Inorganic Materials, Artificial Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
6 School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China
A dual-wavelength synchronously mode-locked homogeneously broadened bulk laser operating at 1985.6 and 1989 nm is presented for the first time, to the best of our knowledge, which delivers a maximum output power of 166 mW and a repetition rate of 85 MHz. The pulse duration was measured to be 16.8 ps by assuming a sech2 pulse shape. The recorded autocorrelation trace showed frequency beating signals with an interval of 3.8 ps and a full width at half-maximum duration of 2 ps, corresponding to an ultrahigh beating frequency of about 0.26 THz, which agrees well with the frequency difference of the emitted two spectral peaks. The results indicated that such a kind of dual-wavelength mode-locked Tm:YAlO3 laser could be potentially used for generating terahertz radiations.
140.4050 Mode-locked lasers 140.3580 Lasers, solid-state 140.3070 Infrared and far-infrared lasers 
Chinese Optics Letters
2019, 17(9): 091401
Author Affiliations
Abstract
1 School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao 266237, China
2 Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Gold nanorods (GNRs) with two different aspect ratios were successfully utilized as saturable absorbers (SAs) in a passively Q-switched neodymium-doped lutetium lithium fluoride (Nd:LLF) laser emitting at 1.34 μm. Based on the GNRs with an aspect ratio of five, a maximum output power of 1.432 W was achieved, and the narrowest pulse width was 328 ns with a repetition rate of 200 kHz. But, in the case of the GNRs with the aspect ratio of eight, a maximum output power of 1.247 W was achieved, and the narrowest pulse width was 271 ns with a repetition rate of 218 kHz. Our experimental results reveal that the aspect ratios of GNRs have different saturable absorption effects at a specific wavelength. In other words, for passively Q-switched lasers at a given wavelength, we are able to select the most suitable GNRs as an SA by changing their aspect ratio.
140.3480 Lasers, diode-pumped 140.3540 Lasers, Q-switched 140.3070 Infrared and far-infrared lasers 
Chinese Optics Letters
2019, 17(4): 041401
Author Affiliations
Abstract
1 School of Information Science and Engineering, Shandong University, Jinan 250100, China
2 Department of Photonics, Taiwan Sun Yat-sen University, 70 Lienhei Road, Kaohsiung 80424, China
3 State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China
4 Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academic Road, Taipei 11529, China
5 e-mail: shengzhi_zhao@sdu.edu.cn
6 e-mail: chuckcklee@yahoo.com
In this paper, the fabrication process and characterization of Bi2Te3 topological insulators (TIs) synthesized by the spin-coating-coreduction approach (SCCA) is reported. With this approach, high-uniformity nano-crystalline TI saturable absorbers (TISAs) with large-area uniformity and controllable thickness are prepared. By employing these prepared TIs with different thicknesses as SAs in 2-μm solid-state Q-switched lasers, thickness-dependent output powers and pulse durations of the laser pulses are obtained, and the result also exhibits stability and reliability. The shortest pulse duration is as short as 233 ns, and the corresponding clock amplitude jitter is around 2.1%, which is the shortest pulse duration in TISA-based Q-switched 2-μm lasers to the best of our knowledge. Moreover, in comparison with the TISA synthesized by the ultrasound-assisted liquid phase exfoliation (UALPE) method, the experimental results show that lasers with SCCA synthesized TISAs have higher output powers, shorter pulse durations, and higher pulse peak powers. Our work suggests that the SCCA synthesized TISAs could be used as potential SAs in pulsed lasers.
Lasers, Q-switched Optical properties 
Photonics Research
2018, 6(4): 04000314
Author Affiliations
Abstract
School of Information Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, China
By simultaneously employing both an electro-optic modulator and carbon nanotube saturable absorber (CNT-SA) in a dual-loss modulator, a subnanosecond single mode-locking pulse underneath a Q-switched envelope with high peak power was generated from a doubly Q-switched and mode-locked (QML) Nd:Lu0.15Y0.85VO4 laser at 1.06 μm for the first time, to our knowledge. CNTs with different wall structures—single-walled CNTs (SWCNTs), double-walled CNTs (DWCNTs), and multi-walled CNTs (MWCNTs)—were used as SAs in the experiment to investigate the single mode-locking pulse characteristics. At pump power of 10.72 W, the maximum peak power of 1.312 MW was obtained with the DWCNT.
Lasers Lasers frequency modulated frequency modulated Lasers Lasers pulsed pulsed Lasers Lasers solid-state solid-state Mode-locked lasers Mode-locked lasers 
Photonics Research
2017, 5(1): 01000046
Author Affiliations
Abstract
1 School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Jinan 250100, China
2 Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
3 Institut für Laser-Physik, Universit?t Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
4 Hamburg Centre for Ultrafast Imaging, Universit?t Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
5 e-mail: kraenkel@physnet.uni?hamburg.de
Multilayer black phosphorus (BP) nanoplatelets of different thicknesses were prepared by the liquid phase exfoliation method and deposited onto yttrium aluminum garnet substrates to form saturable absorbers (SAs). These were characterized with respect to their thickness-dependent saturable absorption properties at 3 μm. The BP-SAs were employed in a passively Q-switched Er:Lu2O3 laser at 2.84 μm. By using BP exfoliated in different solvents, stable pulses as short as 359 ns were generated at an average output power of up to 755 mW. The repetition rate in the experiment was 107 kHz, corresponding to a pulse energy of 7.1 μJ. These results prove that BP-SAs have a great potential for optical modulation in the mid-infrared range.
Laser materials Laser materials Infrared and far-infrared lasers Infrared and far-infrared lasers Lasers Lasers Q-switched Q-switched 
Photonics Research
2016, 4(5): 05000181

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!